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Neural populations in the language network 
differ in the size of their temporal receptive 
windows

Tamar I. Regev    1,2,9 , Colton Casto    1,2,3,4,9 , Eghbal A. Hosseini1,2, 
Markus Adamek    5,6, Anthony L. Ritaccio7, Jon T. Willie    5,6,  
Peter Brunner    5,6,8 & Evelina Fedorenko    1,2,3 

Despite long knowing what brain areas support language comprehension, 
our knowledge of the neural computations that these frontal and temporal 
regions implement remains limited. One important unresolved question 
concerns functional differences among the neural populations that 
comprise the language network. Here we leveraged the high spatiotemporal 
resolution of human intracranial recordings (n = 22) to examine responses 
to sentences and linguistically degraded conditions. We discovered three 
response profiles that differ in their temporal dynamics. These profiles 
appear to reflect different temporal receptive windows, with average 
windows of about 1, 4 and 6 words, respectively. Neural populations 
exhibiting these profiles are interleaved across the language network, which 
suggests that all language regions have direct access to distinct, multiscale 
representations of linguistic input—a property that may be critical for the 
efficiency and robustness of language processing.

Language processing engages a network of brain regions that reside in 
the temporal and frontal lobes and are typically left lateralized1,2. These 
brain regions respond strongly to linguistic stimuli across presenta-
tion modalities1,3,4, tasks1,5 and languages6. This language-responsive 
network is highly selective for language, showing little or no response 
to diverse non-linguistic inputs and tasks7–11 (see ref. 12 for a review). 
However, the precise computations and neuronal dynamics that under-
lie language comprehension remain debated.

On the basis of neuroimaging and aphasia evidence, some have 
argued for dissociations among different aspects of language, including 
phonological/word-form processing13–15, the processing of word mean-
ings16,17 and syntactic/combinatorial processing18–21. However, other 
studies have reported distributed sensitivity to these aspects of language 

across the language network1,22–25. Some of the challenges in discovering 
robust functional differences within the language network may have to do 
with the limitations of functional magnetic resonance imaging (fMRI)—
the dominant methodology available for studying language processing. 
Each fMRI voxel contains a million or more individual neurons, which may 
differ functionally. If different linguistic computations are implemented 
in distinct neural populations that are distributed and interleaved across 
the language cortex, such dissociations may be difficult to detect with 
fMRI. Further, the relatively slow temporal resolution of fMRI (typically, 
~2 s) may obscure the dynamics of linguistic computations.

In recent years, invasive recordings of human neural activity26, 
including electrocorticography (ECoG) and stereo electroencepha-
lography (sEEG), have become increasingly available to language 
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Results
We used intracranial recordings from patients with intractable epilepsy 
to investigate neural responses during language comprehension. Par-
ticipants in Dataset 1 were presented with four types of linguistic stimuli 
that have been traditionally used to tease apart neural responses to 
word meanings and syntactic structure1,2,27,30,35,36: sentences (S), lists of 
unconnected words (W), Jabberwocky sentences (where content words 
were replaced with non-words, J) and lists of unconnected non-words 
(N) (Fig. 1a,b and Methods, all stimuli are available on OSF37). In each 
trial, 8 words or non-words were presented on a screen serially and 
participants were asked to silently read them. To maintain alertness, 
after each trial, participants judged whether a probe word/non-word 
had appeared in that trial. See Methods for further details of stimulus 
presentation and behavioural response data. In Dataset 2, just two of 
these conditions were used: sentences and lists of non-words.

We asked three research questions: (1) Does the language network 
contain reliably distinct response profiles? If so, (2) What do these 
profiles reflect? And finally, (3) Do electrodes exhibiting different 
response profiles tend to be located in particular regions of the lan-
guage network? We used Dataset 1 (n = 6) for initial evaluation of these 
questions because this dataset contained a richer set of experimental 
conditions. We then used Dataset 2 (n = 16) as an attempt to replicate 
the findings despite the more compact experimental paradigm.

Language electrodes exhibit distinct response profiles
We clustered the high-gamma neural response patterns of 
language-responsive electrodes from Dataset 1 (6 participants, same as 

neuroscience researchers, as patients undergoing presurgical evaluation 
(usually for intractable epilepsy) agree to perform linguistic tasks while 
implanted with intracranial electrodes. These data have high spatial and 
temporal resolution, allowing the tracking of neural dynamics across 
both space and time. Several previous studies have probed intracranial 
neural responses during language comprehension27–31. For example, 
ref. 27 reported sensitivity in language-responsive electrodes to both 
word meanings and combinatorial processing, in line with fMRI findings 
(for example, ref. 1). They also reported a temporal profile where neural 
activity gradually increases (builds up) across the sentence (replicated 
in refs. 28–30), which they interpreted as reflecting the construction of 
a sentence meaning. However, considerable disagreement exists in the 
field regarding the number of distinct profiles that characterize cortical 
language responses, how they functionally differ and what computations 
they collectively support in the service of language comprehension and 
production.

Here we report a detailed investigation of neural responses during 
language processing. To isolate the language network from nearby 
lower-level perceptual areas and domain-general cognitive areas, we 
focus on electrodes that show a characteristic functional signature of 
the language areas: a stronger response to sentences than to sequences 
of non-words (as in ref. 27). To foreshadow our findings, we report three 
response profiles that differ in their temporal dynamics and overall 
magnitude of response to linguistically degraded conditions. Using 
a toy model with a single parameter—the timescale of information 
integration—we argue that these profiles reflect distinct temporal 
receptive window sizes in the language network32–34.
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Fig. 1 | Experimental procedure and the distribution of the implanted 
electrodes for Dataset 1. a, A sample trial from the Sentence condition.  
b, For each of the four experimental conditions, items are presented with word/
non-word probes that either appeared in the trial or not. Adapted from ref. 27.  
c, The locations of language-responsive (n = 177, red; Methods) and non-
language-responsive (n = 373, black) electrodes across the 6 participants in 
Dataset 1. Electrodes were implanted almost exclusively in the left hemisphere 

for Dataset 1 and concentrated in the temporal and frontal lobes. d, Response 
reliability across odd and even trials (based on a correlation of average condition-
level responses) for language-responsive and non-language-responsive 
electrodes. Language-responsive electrodes exhibit more reliable responses to 
linguistic stimuli than non-language-responsive electrodes. Dashed vertical lines 
represent the mean of the corresponding distribution.
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those used in ref. 27, 177 language-responsive electrodes; Fig. 1c, Meth-
ods and Table 1) to sentences (S), word lists (W), Jabberwocky sentences 
( J) and non-word lists (N) (Fig. 1a,b). We focused on differences across 
experimental conditions and therefore, clustering was performed on 
the average condition timecourses, which were concatenated across 
the four conditions to create a single timecourse per electrode (Fig. 2b 
and Methods). The k-medoids clustering algorithm, combined with the 
‘elbow’ method (Methods), suggested that three clusters (k = 3) opti-
mally explain the data (Fig. 2a; similar results emerged with a k-means 
clustering algorithm, see OSF37). Although we combined the electrodes 
from all 6 participants for clustering, electrodes that belong to each of 
the three clusters were evident in every participant individually (Fig. 2b 
and Extended Data Fig. 1).

Additional analyses further suggested that these three response 
types capture a substantial amount of the functional heterogeneity 
in our dataset. First, we repeated the clustering analysis while omit-
ting electrodes below a parametrically varying reliability threshold 
and found that the elbow at k = 3 became more pronounced (Fig. 2a 
inset). Reliability was defined as the correlation between average, 
condition-level responses to odd versus even trials (Fig. 1d). Second, 
when clustering was performed using a larger value of k (for example, 
k = 10), the profiles of many of the additional clusters resembled the 
profiles that we discovered when clustering using k = 3 (Extended Data 
Fig. 2). And third, responses within a given cluster, especially the more 
reliable responses, appeared visually similar to the prototypical clus-
ter response profiles, with only a couple of highly reliable responses 
exhibiting a distinct profile (Extended Data Fig. 3).

The average timecourses for the three clusters are shown in 
Fig. 2e (see Fig. 2d for most representative electrodes from each cluster 
(‘medoids’) chosen by the k-medoids algorithm). Cluster 1 (n = 92 elec-
trodes (52% of all language electrodes); number of electrodes present 
in individual participants: 5–34, Extended Data Fig. 1) was character-
ized by a relatively slow increase (buildup) of neural activity across 
the 8 words in the S condition (a pattern similar to the one reported 
in refs. 27–30; but see Discussion), and much lower activity for the W, 
J and N conditions, with no qualitative difference between the J and N 
conditions (Fig. 2f). Cluster 2 (n = 67 electrodes (38% of all language 
electrodes); number of electrodes present in individual participants: 
1–21, Extended Data Fig. 1) displayed a quicker buildup of neural activ-
ity in the S condition that plateaued approximately 3 words into the 
sentence, a quick build-up of activity in the W condition that began to 
decay after the third word, and a similar response to the J and N condi-
tions as to the W condition with an overall lower magnitude. Cluster 2 
also exhibited ‘locking’ of the neural activity to the onsets of individual 
words in the S condition. Finally, Cluster 3 (n = 18 electrodes (10% of 
all language electrodes); number of electrodes present in individual 
participants: 1–7, Extended Data Fig. 1) showed no buildup of activity 
and was instead characterized by a high degree of locking to the onset 
of each word or non-word in all conditions. In addition, the response 

magnitudes of Cluster 3 were more similar across conditions compared 
with the other two clusters, although the S > W > J > N pattern was still 
visually apparent (Fig. 2f).

We then evaluated the stability of these clusters across trials and 
their robustness to data loss. We found that clusters derived from half 
of the data (either odd- or even-numbered trials) were more similar to 
the clusters derived from the full dataset or from the other half of the 
data than would be expected by chance (P < 0.001, one-sided permuta-
tion test, n = 1,000 permutations; Methods and Fig. 3a). The clusters 
were also robust to the number of electrodes used: clustering solutions 
derived from only a subset of the language-responsive electrodes 
(down to ~27%, ~32% and ~69% of electrodes for Clusters 1, 2 and 3,  
respectively) were more similar to the clusters derived from all the 
electrodes than would be expected by chance (using a P threshold of 
0.05, evaluated with a one-sided permutation test, n = 1,000 permuta-
tions; Methods and Fig. 3b).

To further quantify the apparent differences among the three 
response profiles, we performed two additional analyses. First, we 
examined how strongly the neural signal exhibited ‘locking’ to indi-
vidual word/non-word onsets by correlating the observed responses 
with a fitted sinusoidal function (Methods). This analysis revealed that, 
consistent with visual examination, electrodes in Cluster 3 showed the 
strongest degree of stimulus locking, followed by electrodes in Cluster 2,  
with electrodes in Cluster 1 showing the weakest stimulus-related lock-
ing (significant overall effect of cluster on locking, analysis of variance 
(ANOVA) for linear mixed-effects models F(2,9.13) = 5.4, P = 0.028; 
Methods and Fig. 3c, see Supplementary Table 1a,b for a complete 
description of the statistical details and results). And second, we tested 
how quickly and strongly the S, W, J and N conditions diverged from 
one another in each of the profiles. We did this using a binary logistic 
classifier, trained for each cluster separately, using incrementally 
more of the timecourse for discrimination (Fig. 3d–f and Methods). 
Significance was evaluated as a one-sided cluster statistic against a null 
distribution from permuted labels (refs. 38,39, n = 1,000 permutations; 
Methods). The classification performance (averaged across 10 folds 
of the cross-validated classifier) revealed that neural populations in 
Cluster 1 reliably distinguished S from W earlier and more strongly 
than the neural populations in Clusters 2 and 3. In contrast, neural 
populations in Cluster 2 reliably distinguished W from N and J from N 
earlier and more strongly than neural populations in Clusters 1 and 3.

Although the k-medoids clustering algorithm assigns each elec-
trode to one of k discrete clusters, we wanted to additionally evaluate 
the degree to which single electrode profiles fell between the proto-
typical cluster response profiles. To do this, we computed the partial 
correlation of every electrode’s response profile with that of each of the 
cluster medoids while controlling for the other two medoids (Extended 
Data Fig. 4 and Methods). As shown in Extended Data Fig. 4b, many of 
the electrodes exhibited response profiles that were consistent with 
only ‘one’ of the prototypical responses. However, a few electrodes, 

Table 1 | Details for Dataset 1

Participants Age Sex Site ECoG 
or sEEG

Language-responsive 
electrodes (S > N)

Total clean 
electrodes

Total 
electrodes

Native 
sampling 
freq. (Hz)

Elec. per 
amp.

Runs Pres. rate 
(per word)

Trials per 
cond.

Participant 1 29 F AMC ECoG 62 (0 RH) 108 (0 RH) 120 (0 RH) 1,200 16 10 450 ms 80

Participant 2 25 F AMC ECoG 17 (0 RH) 115 (0 RH) 128 (0 RH) 1,200 16 10 700 ms 60

Participant 3 18 F AMC ECoG 17 (0 RH) 92 (0 RH) 98 (0 RH) 1,200 16 10 700 ms 60

Participant 4 28 M AMC ECoG 26 (0 RH) 106 (0 RH) 134 (0 RH) 1,200 64 10 700 ms 60

Participant 5 25 F AMC ECoG 48 (0 RH) 93 (0 RH) 98 (0 RH) 1,200 64 10 450 ms 80

Participant 6 20 F AMC ECoG 7 (3 RH) 36 (20 RH) 36 (20 RH) 1,200 64 10 450 ms 80

All data were collected at the Albany Medical Center (AMC). Here and in Table 2, ‘Total electrodes’ excludes reference electrodes, ground electrodes, microphone electrodes, trigger 
electrodes, skull EEG electrodes and EKG electrodes; and ‘Total clean electrodes’ excludes electrodes with significant line noise, significant interictal discharges, or large visual artefacts 
identified through manual inspection. ‘Elec. per amp.’ is the number of electrodes per amplifier. ‘Pres. rate (per word)’ is the duration of presentation for each single word or non-word.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01944-2

Concatenated timecourses

1 2 3 1 2 3 1 2 3 1 2 3
6

5

4

3

2

1

Participant
Cluster

Exemplar electrodes (medoids)
Sentences

a.
u.

0

1

0

1

1

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 3

1 2 3 1 2 3 1 2 3 1 2 3

Cluster means

Time
(seconds relative to trial start)

a.
u.

a.
u.

Time
(seconds relative to trial start)

b c

d
Word lists Jabberwocky Non-word lists

e f

1 2 3 1 2 3 1 2 3 1 2 3

Time
(seconds relative to trial start)

0

a.
u.

0

1

0

1

1

a.
u.

a.
u.

0
S W J N

0

0.5

0

0.5
a.

u.
a.

u.

0

1

a.
u.

Cluster 1 Cluster 2 Cluster 3

Principal component #1

Pr
in

ci
pa

l c
om

po
ne

nt
 #

2

0.90
0.60
0.30
0.05

Reliability of neural signal
(correlation odd vs even trials)

Number of clusters (k)
1 2 3 4 5 6 7 8 9 10

0

0.04

0.08

Elbow at k = 3

∆ 
no

rm
al

iz
ed

 v
ar

ia
nc

e

Sentences Word lists Jabberwocky Non-word lists

1 2 3 4 5 6 7 8 9 10

0.8

0.9

1

Elbow at k = 3N
or

m
al

iz
ed

 v
ar

ia
nc

e
a

Al
l e

le
ct

ro
de

s 
(s

or
te

d 
by

 p
ar

tic
ip

an
t/

cl
us

te
r) Sentences Word lists Jabberwocky Non-word lists

1 2 3 4 5 6 7 8 9 10

0.6

1

All electrodes   (n = 177)

0.8

0.4

Reliability > 0.1 (n = 122)
Reliability > 0.2 (n = 94)
Reliability > 0.3 (n = 73)
Reliability > 0.4 (n = 53)

0

0

0.5

0

(n = 1)

(n = 1)

(n = 1)

(n = 92)

(n = 67)

(n = 18)

Fig. 2 | Dataset 1, k-medoids clustering with k = 3. a, Search for optimal k using 
the ‘elbow method’. Top: variance (sum of the distances of all electrodes to their 
assigned cluster centre) normalized by the variance when k = 1, as a function 
of k (normalized variance, NV). Inset: clustering was performed while omitting 
electrodes below a parametrically sampled reliability threshold. Orange shading 
represents the reliability threshold for omitting electrodes. The elbow (point of 
transition between a steeper to a more moderate slope) gets more pronounced 
when eliminating lower-reliability electrodes, which suggests that k = 3 best 
describes these data. Bottom: change in NV as a function of k (NV(k + 1) – NV(k)). 
After k = 3, there was a large drop in the change in variance. b, Clustering mean 
electrode responses (concatenated across the four experimental conditions: 
sentences (S), word lists (W), Jabberwocky ( J), non-word lists (N)) using k-
medoids (k = 3) with a correlation-based distance (Methods). Shading of the 
data matrix reflects normalized high-gamma power (70–150 Hz). Electrodes are 
sorted vertically by participant and their assignment to clusters (right colour 
bar). All three clusters are present in each of the 6 participants. c, Electrode 

responses visualized on their first two principal components, coloured by cluster 
and shaded by the reliability of the neural signal as estimated by correlating 
responses to odd and even trials (Fig. 1d). d, Timecourses of best representative 
electrodes (‘medoids’) selected by the algorithm from each of the three clusters. 
The timecourses reflect normalized high-gamma (70–150 Hz) power averaged 
over all trials of a given condition. a.u. stands for arbitrary units; the signals were 
z-scored and normalized to have minimum value of 0 and maximum value of 1. 
e, Timecourses averaged across all electrodes in each cluster (n = 92, 67 and 18 
for Clusters 1, 2 and 3, respectively). Shaded areas around the signal reflect the 
99% confidence interval over electrodes. f, Mean condition responses by cluster. 
Error bars reflect s.e.m. over electrodes (n = 92, 67 and 18 for Clusters 1, 2 and 3, 
respectively, as in e). Data points reflect individual electrodes. After averaging 
across time, response profiles are not as distinct by cluster (especially for 
Clusters 2 and 3), which underscores the importance of temporal information in 
elucidating this grouping of electrodes.
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mostly in Clusters 1 and 2, exhibited high partial correlations with 
another cluster’s medoid (that is, a ‘mixed’ response profile). Visual 
inspection of these response profiles (Extended Data Fig. 4c,d; see 
OSF37) revealed that these electrodes displayed a blend of Cluster 1 
and Cluster 2 response characteristics. The existence of mixture elec-
trodes primarily between Clusters 1 and 2 is in line with the generally 
high correlation between their medoids (0.68 between Clusters 1 and 
2 medoids vs 0.21 between Clusters 1 and 3, and 0.24 between Clusters 
2 and 3; Fig. 3a).

Profiles reflect different temporal receptive windows
The temporal dynamics of the neural responses across clusters sug-
gested that the observed differences in the response profiles may reflect 
different ‘temporal receptive windows’ (TRWs). TRWs are a temporal 
equivalent of spatial receptive fields that corresponds to the amount 
of the preceding temporal context that affects the processing of the 
current input (for example, refs. 32,40,41). In particular, a neural popu-
lation that only processes information over the span of a single word 
should exhibit visible evoked responses at the rate of stimulus pres-
entation, reflecting the momentary stimulus-related fluctuations. 
On the other hand, a neural population that processes information 
over spans of multiple words should exhibit a response that reflects 
a more smoothed version of the stimulus train, with no momentary 
stimulus-related fluctuations. As described in ‘Language electrodes 
exhibit distinct response profiles’, the three clusters differed in their 
degree of locking to the individual word onsets. Cluster 3 showed 
the strongest locking, followed by Cluster 2, with Cluster 1 showing 
the weakest amount of locking (Fig. 3c), consistent with a decreasing 
TRW size from Cluster 1 to 2 to 3. Moreover, a neural population that 
only processes information over the span of roughly a single word 
(or less) should show little sensitivity to whether nearby words can 
be composed into phrases. This is the pattern we saw for electrodes 
in Cluster 3 (Fig. 3d): these electrodes did not reliably discriminate 
between the Sentence and Word-list conditions. In contrast, a popula-
tion that processes information over spans of multiple words should 

show sensitivity to the composability of nearby words, and thus should 
strongly discriminate between sentences and word lists. This is the pat-
tern we saw for electrodes in Clusters 1 and 2, with Cluster 1 electrodes 
showing earlier and stronger discrimination (Fig. 3d). Note that this 
greater difference between the Sentence and Word-list conditions 
for longer-TRW neural populations is presumably due to the fact that 
linguistic differences between these two conditions become more 
pronounced for longer word sequences (for example, see Extended 
Data Fig. 5 for evidence from n-gram frequency counts).

To formally test whether the clusters indeed differ in the size of 
their TRWs, we constructed a toy model wherein we convolved a simpli-
fied stimulus train with response functions (Gaussian-based ‘kernels’) 
of varying widths (TRW sizes denoted as σ; Fig. 4a, see Methods for 
model assumptions and implementational details). The resulting 
simulated responses exhibited striking visual similarity to the observed 
response patterns (Fig. 4a). We then computed, for every electrode, 
a correlation between each simulated response and the observed 
response, and we selected the σ value that yielded the highest cor-
relation (Fig. 4b,c and Methods). The estimated TRW sizes showed a 
clear pattern of decrease from Clusters 1 to 2 to 3; the average σ values 
per cluster were ~6, ~4 and ~1 words for Clusters 1, 2 and 3, respectively 
(P < 0.0001 comparing TRWs across all pairs of clusters, evaluated with 
a linear mixed-effects (LME) model; Methods and Fig. 4b,c, see Sup-
plementary Table 5 for a complete description of the statistical details 
and results). To evaluate the robustness of this result, we repeated the 
TRW fitting procedure using other kernel shapes and confirmed that 
the relative sizes of the TRWs of the three clusters did not depend on the 
specific choice of kernel shape (Extended Data Fig. 6). Furthermore, the 
estimated values of σ in number of words (as reported above) appear 
to be invariant to the stimulus presentation rate, which suggests that 
the TRW of language-responsive electrodes is information-, not time-, 
dependent (see Supplementary Tables 6 and 7 for complete statistical 
results). However, this rate invariance should be investigated further in 
future work given the small number of participants in each presenta-
tion rate group (n = 3) and, correspondingly, the low statistical power.

Table 2 | Details for Dataset 2

Participant Age Sex Site ECoG 
or sEEG

Language-responsive 
electrodes (S > N)

Total clean 
electrodes

Total 
electrodes

Native 
sampling 
freq. (Hz)

Elec. per 
amp.

Runs Pres. rate 
(per word)

Trials 
per 
cond.

Participant 7 51 M AMC ECoG 14 (7 RH) 116 (25 RH) 126 (26 RH) 1,200 64 3 750 ms 48

Participant 8 30 F AMC both 18 (0 RH) 76 (1 RH) 92 (3 RH) 1,200 64 3 750 ms 72

Participant 9 31 M AMC sEEG 2 (1 RH) 90 (44 RH) 98 (52 RH) 1,200 64 2 600 ms 72

Participant 10 59 F AMC sEEG 2 (0 RH) 113 (0 RH) 124 (0 RH) 1,200 64 2 600 ms 72

Participant 11 23 M AMC ECoG 58 (33 RH) 209 (110 RH) 216 (110 RH) 1,200 64 2 600 ms 72

Participant 12 39 M AMC sEEG 5 (5 RH) 112 (112 RH) 128 (128 RH) 1,200 64 2 600 ms 72

Participant 13 29 M AMC ECoG 9 (0 RH) 126 (0 RH) 132 (0 RH) 1,200 64 2 600 ms 72

Participant 14 36 M AMC sEEG 3 (2 RH) 169 (84 RH) 184 (90 RH) 1,200 64 2 600 ms 72

Participant 15 25 M BJH sEEG 19 (16 RH) 183 (93 RH) 183 (93 RH) 1,000 64 2 600 ms 72

Participant 16 38 M BJH sEEG 49 (15 RH) 169 (72 RH) 224 (112 RH) 1,000 64 2 600 ms 72

Participant 17 31 F BJH sEEG 17 (0 RH) 228 (30 RH) 228 (30 RH) 1,000 64 2 600 ms 72

Participant 18 40 M BJH sEEG 35 (5 RH) 137 (11 RH) 192 (14 RH) 1,000 64 2 600 ms 72

Participant 19 66 M BJH sEEG 32 (1 RH) 210 (13 RH) 234 (16 RH) 2,000 64 2 600 ms 72

Participant 20 24 M BJH sEEG 7 (0 RH) 156 (30 RH) 218 (30 RH) 2,000 64 2 600 ms 72

Participant 21 39 M MCJ sEEG 11 (1 RH) 108 (45 RH) 109 (45 RH) 1,200 64 1 600 ms 36

Participant 22 21 F SLCH sEEG 81 (81 RH) 176 (176 RH) 186 (186 RH) 2,000 64 2 600 ms 72

Data were collected at four sites: Albany Medical Center (AMC), Barnes-Jewish Hospital (BJH), Mayo Clinic Jacksonville (MCJ) and St Louis Children’s Hospital (SLCH). 'Total electrodes’ 
excludes reference electrodes, ground electrodes, microphone electrodes, trigger electrodes, skull EEG electrodes and EKG electrodes; and ‘Total clean electrodes’ excludes electrodes with 
significant line noise, significant interictal discharges, or large visual artefacts identified through manual inspection. ‘Elec. per amp.’ is the number of electrodes per amplifier. ‘Pres. rate (per 
word)’ is the duration of presentation for each single word or non-word.
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Clusters 1 and 2 are interleaved, Cluster 3 shows posterior bias
We tested for differences in the anatomical distribution of the elec-
trodes that belong to the 3 clusters in Dataset 1. We excluded from this 
analysis right-hemisphere (RH) electrodes because only 4 RH elec-
trodes passed the language selectivity criterion (S > N). We focused 
on the y (posterior-anterior) and z (inferior-superior) directions in 
the MNI coordinate space within the left hemisphere. Electrodes in 
both Clusters 1 and 2 were distributed across the temporal and frontal 
language regions (Fig. 5). When examining all electrodes together, or 

focusing on only the frontal or only the temporal electrodes, the MNI 
coordinates of electrodes in Clusters 1 and 2 did not significantly dif-
fer in either of the two tested directions (P > 0.05, evaluated with an 
LME model; Methods and Fig. 5c,d, see Supplementary Table 2a for 
complete statistical results). However, when weighting the electrodes 
by their reliability in the LME model, electrodes in Cluster 1 fell more 
anteriorly and inferiorly relative to electrodes in Cluster 2 (P < 0.05, 
evaluated with an LME model; Methods, see Supplementary Table 2b 
for complete statistical results). Electrodes in Cluster 3 were located 
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Fig. 3 | Evaluation of Dataset 1 clusters. a, Comparison of clusters from all trials 
(top three rows) versus only even (middle three rows) or odd (bottom three rows) 
trials. Clusters that emerged using only odd or even trials were highly similar to 
the clusters that emerged when all trials were used (P < 0.001; evaluated with a 
one-sided permutation test, n = 1,000 permutations; Methods). b, Robustness 
of clusters to electrode omission. Random subsets of electrodes were removed 
in increments of 5 (Methods). Similarity of cluster centres was computed 
between the clusters that emerged when all electrodes were used versus when 
random subsets of electrodes were removed. Stars reflect significant similarity 
with the full dataset (using a P threshold of 0.05; evaluated with a one-sided 
permutation test, n = 1,000 permutations; Methods). Shaded regions reflect 
s.e.m. over randomly sampled subsets of electrodes. Cluster 3 was driven the 
most by individual electrodes relative to Clusters 1 and 2. c, Correlation of fitted 
sinusoidal function with timecourse of electrodes (averaged across trials) by 
cluster and by condition (Methods). Error bars reflect s.e.m. over electrodes 
(n = 92, 67 and 18 electrodes for Clusters 1, 2 and 3, respectively). Data points 
represent individual electrodes. Electrodes in Cluster 3 were the most locked 

to word/non-word presentation, whereas electrodes in Cluster 1 were the least 
locked to word/non-word presentation. There was a significant main effect for 
cluster (P < 0.05) but not for condition (two-sided ANOVA for linear mixed-
effects models; Methods, see Supplementary Table 1a,b for complete statistical 
results). The observed qualitative between-condition differences could be due to 
generally greater engagement of these neural populations with more language-
like stimuli. d–f, Classifier performance by cluster as a function of the amount of 
timecourse included in training (Methods). A binary logistic classifier was trained 
to discriminate the Sentence (S) and Word-list (W) conditions (d), Word-list (W) 
and Non-word-list (N) conditions (e), and Jabberwocky ( J) and Non-word-list 
(N) conditions (f). Significance stars at the bottom (coloured by cluster) reflect 
discriminability of conditions above chance level (P < 0.05, evaluated as a one-
sided cluster statistic against a null distribution from permuted labels, n = 1,000 
permutations; this statistical test accounts for multiple comparisons and for 
the autocorrelational structure of the signal; Methods and refs. 38,39). Shaded 
regions reflect s.e.m. across the 10 folds of the cross-validated classifier. The 
dashed black line reflects chance performance (0.5).
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significantly more posteriorly than those in Clusters 1 and 2 (lower 
y-coordinate values, both Clusters 3 vs 1 and Clusters 3 vs 2, P < 0.0001; 
Methods and Fig. 5c, see Supplementary Table 2a for complete statis-
tical results).

To complement this analysis, we visualized the anatomical dis-
tribution of electrodes in two additional ways. First, we visualized all 
language-responsive electrodes by their partial correlations to each 
of the cluster medoids (Extended Data Fig. 4e). This approach does 
not enforce a categorical grouping into clusters, potentially allowing 
for more subtle response gradients. However, this analysis revealed 
a similar picture: Cluster-1- and Cluster-2-like responses were pre-
sent throughout frontal and temporal areas, whereas Cluster-3-like 
responses were localized to the posterior superior temporal gyrus. 
Second, we examined the distribution of electrodes by their fitted 
TRW (Extended Data Fig. 5f). This visualization exhibited a gross 
anatomical trend of TRWs increasing from posterior to anterior 
regions; however, there remained a substantial local mosaic pat-
tern, with long-TRW electrodes present in posterior temporal areas 
and short-TRW electrodes present in anterior temporal and frontal 
areas as well.

Clusters 1 and 3 replicate in Dataset 2, Cluster 2 partly 
replicates
We asked whether the same clusters would emerge in a second, inde-
pendent dataset with new participants and different linguistic materials 
(Dataset 2; 16 participants; 362 language-responsive electrodes; mostly 
depth electrodes; Fig. 6a, Methods and Table 2). Participants in Data-
set 2 only saw two of the four conditions presented to participants in 
Dataset 1 (sentences (S) and non-word lists (N), but not word-lists (W) 
or Jabberwocky sentences ( J)); therefore, we started by reclustering 
the electrodes from Dataset 1 using only the responses to the S and N 
conditions to allow for direct comparisons with Dataset 2.

The Dataset 1 cluster averages, when only the S and N conditions 
were used, exhibited a strong qualitative similarity to those of the 
clusters derived using the data from all four conditions (Extended Data 
Fig. 7). Approximately 80% of electrodes in Dataset 1 were assigned to 
the same cluster regardless of whether they were clustered using all 
four or just the two conditions (the S+N clusters were ‘matched’ to the 
S+W+J+N clusters by highest correlation, Methods). However, Cluster 
2 was less robust to electrode loss than Clusters 1 and 3 (compare the 
green curve in Fig. 3b to the green curve in Extended Data Fig. 7g). 
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Fig. 4 | Estimating the size of the TRW of different electrodes. a, A toy model 
that simulates neural responses to the Sentence condition as a convolution of 
a simplified stimulus train and truncated Gaussian kernels of varying widths. 
Top: simplified stimulus train where peaks indicate a word/non-word onset and 
sample kernels correspond to varying temporal receptive window sizes (σ). The 
kernels were constructed from Gaussian curves with a standard deviation of 
σ/2 truncated at ±1 s.d. (capturing 2/3 of the area under the Gaussian; Methods) 
and normalized to a minimum of 0 and a maximum of 1. Bottom: the resulting 
simulated neural signals for sample kernel widths, normalized to a minimum 
of 0 and a maximum of 1. b, Best TRW fit for all electrodes (each dot represents 
a single electrode) coloured by cluster and sized by the reliability of the neural 
signal as estimated by correlating responses to odd and even trials (Fig. 1d). The 
goodness of fit, or correlation between the simulated and observed neural signal 

(Sentence condition only), is shown on the y axis. c, Estimated TRW sizes across 
all electrodes (grey) and per cluster (red, green and blue representing Clusters 
1, 2 and 3, respectively). Within each horizontal violin plot, single dots represent 
single electrodes, black vertical lines correspond to the mean window size and 
the white dots correspond to the median. Horizontal thin black boxes represent 
the lower and upper quartiles, ‘x’ marks (present in Cluster 3 only) indicate 
outlier electrodes (more than 1.5 interquartile ranges above the upper quartile 
or less than 1.5 interquartile ranges below the lower quartile) and the violin 
body is plotted within the data range after excluding outliers. Significance was 
evaluated with an LME model (comparing estimate values, two-sided ANOVA for 
LME; Methods, see Supplementary Table 5 for exact P values). Together, b and c 
show that the clusters varied in the size of their TRWs, from a relatively long TRW 
(Cluster 1) to a relatively short one (Cluster 3).
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This finding suggests that responses to the Word-list and Jabberwocky 
conditions are especially important for differentiating Cluster 2 from 
the other response profiles, presumably because these conditions 
pattern differently for Clusters 1 and 2.

We next clustered the electrodes in Dataset 2 using the same 
approach as for Dataset 1. The optimal number of clusters in Dataset 2 
was k = 2 based on the elbow method, and the resulting clusters were 
visually similar to Clusters 1 and 3 from Dataset 1 (n = 211 electrodes 
and P < 0.001 for the cluster resembling Cluster 3 in Dataset 1; n = 151 
electrodes and P = 0.061 for the cluster resembling Cluster 1 in Data-
set 1; one-sided permutation test, n = 1,000 permutations; Methods, 
see OSF37; note that this permutation test is especially conservative 
with only two experimental conditions and when k = 2). We also per-
formed a version of clustering Dataset 2 enforcing k = 3 to test whether 
a Cluster-2-like response would emerge (Fig. 6). The same two cluster 

centres as in the case of k = 2 were again apparent and showed reli-
able similarity to Clusters 1 and 3 in Dataset 1 (n = 172 electrodes and 
P < 0.001 for the cluster resembling Cluster 1 in Dataset 1; n = 81 elec-
trodes and P = 0.023 for the cluster resembling Cluster 3 in Dataset 1; 
one-sided permutation test, n = 1,000 permutations; Methods and 
Fig. 6g,i). The third cluster qualitatively resembled some aspects of 
Cluster 2 from Dataset 1 (Fig. 6g), but the resemblance was not statisti-
cally reliable (n = 109 electrodes, P = 0.732, one-sided permutation test, 
n = 1,000 permutations; Methods).

As another, less stringent, test of whether Cluster 2 responses were 
present in Dataset 2, we assigned each electrode in Dataset 2 to a ‘group’ 
on the basis of their highest correlation with the average response 
profiles from Dataset 1, in a ‘winner-take-all’ approach (Extended Data 
Fig. 8). A substantial number of electrodes in Dataset 2 (n = 95 of the 
total of n = 362) were most correlated with Cluster 2 from Dataset 1 
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Fig. 5 | Anatomical distribution of the clusters in Dataset 1. a, Anatomical 
distribution of language-responsive electrodes in Dataset 1 across all participants 
in MNI space, coloured by cluster. b, Anatomical distribution of language-
responsive electrodes in participant-specific space, coloured by cluster.  
c–e, Violin plots of MNI coordinate values for the 3 clusters, where each point 
represents the mean coordinate value across electrodes for a given participant 
and cluster. Individual dots represent individual participants (n = 6). The mean 
across participants is plotted with a black horizontal line and the median is 
shown with a white circle. Vertical thin black boxes represent the lower and upper 
quartiles. Significance was evaluated with a linear mixed-effects (LME) model 

(comparing estimate values, two-sided ANOVA for LME models; Methods, for 
exact P values see Supplementary Table 2a–d). Cluster 3 exhibited a posterior 
bias (more negative y-coordinate) relative to Clusters 1 and 2 when modelled 
using all language electrodes (P < 0.001, c). This trend was also evident when 
examining only the frontal (d) or only the temporal (e) electrodes separately, but 
the difference only reaches significance for the temporal electrodes (P < 0.01). 
f, Anatomical distribution of electrodes in Dataset 1 coloured by their estimated 
TRW (Fig. 4). There was a slight trend of increasing TRW size from posterior to 
anterior regions but with considerable local heterogeneity.
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Fig. 6 | Dataset 2 k-medoids clustering with k = 3. a, The locations of  
language-responsive (n = 362, red; Methods) and non-language-responsive 
(n = 2,017, black) electrodes across the 16 participants in Dataset 2 (both surface 
and depth electrodes were implanted). Language-responsive electrodes were 
found across the cortex, in both the left and right hemispheres (Table 2).  
b,c, Response reliability as estimated by correlating responses to odd and even 
trials for language-responsive and non-language-responsive electrodes (as in  
Fig. 1d). Language-responsive electrodes exhibit more reliable responses to 
linguistic stimuli than non-language-responsive electrodes for both Dataset 
1 (when taking into account the Sentence and Non-word-list conditions only, 
b) and Dataset 2 (c); however, the responses of language electrodes were less 
reliable in Dataset 2 than in Dataset 1. d, Clustering mean electrode responses 
(concatenated responses to sentences and non-word lists) in Dataset 2 using 
k-medoids (k = 3) with a correlation-based distance. Shading of the data matrix 
reflects normalized high-gamma power (70–150 Hz). e, Electrodes visualized 
on their first two principal components, coloured by cluster. f,g, Average 

timecourse by cluster from Dataset 1 when using only the Sentence and Non-
word-list conditions (f; see Extended Data Fig. 7; n = 99, 61 and 17 electrodes 
for Clusters 1, 2 and 3, respectively) and from Dataset 2 (g, n = 172, 109 and 81 
electrodes for Clusters 1, 2 and 3, respectively). Shaded areas around the signal 
reflect the 99% confidence interval over electrodes. h, Mean condition responses 
by cluster in Dataset 2. Error bars reflect s.e.m. over electrodes (n = 172, 109 
and 81 electrodes for Clusters 1, 2 and 3, respectively, as in g). As with Dataset 
1, after averaging across time, response profiles were not as distinct by cluster, 
underscoring the importance of temporal information in elucidating this 
grouping of electrodes. i, Evaluation of clusters from Dataset 1 (clustering with 
the Sentence and Non-word-list conditions only) against clusters from Dataset 
2. Clusters 1 and 3 from Dataset 1 replicated in Dataset 2 (P < 0.001 and P = 0.023, 
respectively; one-sided permutation test; Methods). Although Cluster 2 
demonstrated some qualitative similarity across the two datasets, this similarity 
was not statistically reliable (P = 0.732, one-sided permutation test; Methods).
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(while n = 142 electrodes were most correlated with Cluster 1 and n = 125 
electrodes were most correlated with Cluster 3). This analysis indicates 
that Cluster-2-like responses are indeed present in Dataset 2, even 
though they did not reliably emerge through the data-driven cluster-
ing approach. The lower robustness of the Cluster-2-like responses in 
Dataset 2 could in part be attributable to the lower split-half reliability 
of Dataset 2 compared with Dataset 1 (compare Fig. 6b vs c), as well as 
the sparser spatial coverage due to the prevalence of depth electrodes 
(Fig. 6a). For completeness, an analysis of the anatomical trends in 
Dataset 2 is presented in Extended Data Fig. 9 (see Supplementary 
Tables 3 and 4 for a complete statistical comparison of the anatomical 
locations of the two statistically reliable clusters in Dataset 2).

Finally, we estimated the TRW size (as in ‘Profiles reflect different 
temporal receptive windows’) for each electrode in Dataset 2 (Extended 
Data Fig. 10). Clusters 1 and 3 (the two clusters that consistently rep-
licated from Dataset 1) were best described by TRWs of ~4.5 and ~1 
words, respectively (Extended Data Fig. 10a,b), similar to the TRW sizes 
observed for those clusters in Dataset 1. The TRW of Cluster 2 did not 
significantly differ from that of Cluster 3 when relying on the electrode 
assignments from the clustering algorithm with k = 3 (where Cluster 2 
did not replicate; Methods, Fig. 6, Extended Data Fig. 10b and Supple-
mentary Table 8). However, using the winner-take-all approach (where 
a more Cluster-2-like response was observed; Extended Data Figs. 8 and 
10d), the TRW of Group 2 was ~2.1 words, which significantly differed 
from that of Groups 1 and 3 (P < 0.01 comparing TRWs across all pairs 
of groups, evaluated using an LME model; Methods and Extended Data 
Fig. 10c,d, see Supplementary Table 9 for complete statistical results) 
and was similar to the TRW of Cluster 2 from Dataset 1.

Discussion
The nature of the neural computations that support our ability to 
extract meaning from linguistic input remains an important open 
question in the field of language research. Here we leveraged the high 
temporal and spatial resolution of human intracranial recordings 
to probe the fine temporal dynamics and the spatial distribution of 
language-responsive neural populations. We uncovered three temporal 
profiles of response during the processing of sentences and linguis-
tically degraded conditions such as lists of words or non-words. We 
suggest that these profiles differ in the size of their TRW—the amount 
of temporal context that affects the neural processing of the current 
input. Further, we found that electrodes with distinct response profiles 
manifest in a scattered spatial distribution across both frontal and 
temporal cortices. Below, we contextualize these results with respect to 
previous empirical work and discuss their implications for our under-
standing of human language processing.

Three types of language-responsive neural populations
In the present study, we used a clustering approach to group neural 
populations (as measured by intracranial macroelectrodes; note that 
when we write that ‘electrodes’ exhibit a response, we are referring to 
the ‘neural populations’ that the electrodes are measuring) by their 
responses to four types of language stimuli: sentences (S), lists of 
unconnected words (word lists, W), Jabberwocky sentences (where 
content words are replaced with pronounceable non-words; J) and 
lists of unconnected non-words (N). We uncovered three dominant 
response profiles (‘clusters’) that differed in the presence and timing 
of the increase (buildup) of neural activity over the course of a sen-
tence, the degree of locking to individual word/non-word onsets and 
the overall magnitude of response to the linguistically degraded condi-
tions (W, J and N). Within each cluster, individual electrodes exhibited 
highly similar responses, with a small number of electrodes display-
ing a mixed response between Clusters 1 and 2. Finally, we found evi-
dence for each of the three response profiles in an independent dataset 
that only included two of the four linguistic conditions (sentences 
and non-word lists), although Clusters 1 and 3 were more robustly 

replicated. Importantly, because we had restricted our analyses to 
electrodes that show a functional signature of the language network 
(a stronger overall response during the processing of structured and 
meaningful language stimuli—sentences—than during the processing 
of perceptually similar but meaningless and unstructured stimuli—
non-word lists; ref. 1), these findings provide evidence for ‘functional 
heterogeneity within the language network’ proper, rather than 
between the language areas and nearby functionally distinct brain 
regions, such as speech areas42,43 or higher-level cognitive networks44,45 
(see ref. 12 for discussion).

The experimental design adopted in the current study has tra-
ditionally been used as a way to tease apart neural responses to word 
meanings (present in sentences and word lists, but not in Jabberwocky 
sentences and non-word lists) and syntactic structure (present in sen-
tences and, under some views of syntax, in Jabberwocky sentences, but 
not in word/non-word lists; refs. 1,27,35). As measured with fMRI, all 
areas of the language network show sensitivity to both word meanings 
and syntactic structure: the response is strongest to sentences, lower to 
word lists and Jabberwocky sentences, and lowest to non-word lists1,2,30,36 
(see refs. 23,22 for evidence against the lexical/syntactic dissociation 
from other paradigms; see ref. 46 for earlier arguments and evidence). 
Using a similar design in an intracranial recording study, ref. 27 repli-
cated this overall pattern of response and also reported a temporal 
profile—present in a subset of electrodes—whereby high-gamma power 
builds up across words over the course of a sentence but not in other 
conditions (replicated in refs. 28–30). They interpreted this build-up 
effect as indexing the process of constructing a sentence-level meaning.

Here we investigated the temporal profiles of language-responsive 
electrodes more comprehensively. By leveraging the fine-grained tem-
poral information in the signal (that is, considering the full timecourses 
instead of averaging high-gamma power in each word/non-word as 
in ref. 27), we found that the build-up effect reported in ref. 27 repre-
sents a mix of functionally distinct populations. The timecourse of 
response to the Sentence condition in ref. 27 is most similar to that in 
Cluster 1 here. However, a reliable sentences > word lists > Jabberwocky 
sentences > non-word lists profile in ref. 27 suggests a contribution 
from Cluster 2 neural populations. As such, our analyses identify two 
functionally distinct build-up profiles and additionally uncover a third 
profile, which does not show buildup of activity over time, and we 
replicated these results in a new, larger dataset with a different set 
of language materials (Dataset 2). Importantly, here we show that 
despite strong integration between lexical and syntactic processing, 
neural populations within the language network ‘do’ differ functionally, 
although along a different dimension—the temporal scale of informa-
tion integration.

Distinct temporal receptive windows in the language network
A TRW denotes the amount of the preceding context that a given neu-
ral unit integrates over32,40,41. Previous studies have demonstrated 
that cortical neural activity is organized into a hierarchy of time-
scales, wherein information over tens to hundreds of milliseconds is 
encoded by sensory cortical areas, and information over many seconds 
is encoded by higher-order areas47–49. Past fMRI studies have shown 
that the TRW of the language network falls somewhere between a 
word and a short sentence32–34,36,50–52, although some work has sug-
gested that language regions are, at least to some degree, sensitive to 
sublexical regularities25,53. Using a simple instantiation of an informa-
tion processing system—with one (interpretable) free parameter: the 
length of past stimulus context—we estimated the TRW of different 
language-responsive neural populations. On the basis of this analysis, 
we argue that our observed ‘response profiles differ in their timescale of 
information processing’, from sublexical units and single words (Cluster 
3) to short phrases (Cluster 2) to longer phrases/sentences (Cluster 1).

Do the observed response profiles reflect categorically distinct 
clusters that integrate information over different timescales, or is 
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the underlying structure of language-selective responses in the brain 
best described by a continuum of TRWs with no sharp boundaries or 
groupings of response types? Although we do not rule out the possibil-
ity of a TRW continuum, our data are well explained by the grouping of 
responses into three categories. A few electrodes do exhibit a ‘mixed’ 
response profile, falling somewhere between the prototypical Cluster 
1 and Cluster 2 responses, but this mixing could be due to these elec-
trodes picking up activity of multiple neural populations. Recordings 
at a higher spatial resolution would be needed to evaluate this possibil-
ity (for example, refs. 54,55). Nevertheless, the current data suggest 
the existence of neural populations within the language network that 
are sensitive to information chunks of ‘distinct and specific size’. This 
functional organization is presumably driven by the statistics of natural 
language and is probably critical for efficient extraction of meaning 
from language (see ‘Future directions’).

To estimate the TRW values, we made several simplifying assump-
tions that can be revisited in future studies. First, we have discussed 
TRWs in terms of the number of ‘words’. However, natural languages 
vary substantially in how they package information into words56 and 
the processing of a given word is highly dependent on how informative 
the word is in context (for example, ref. 57; for behavioural evidence, 
see ref. 58). As a result, TRWs may instead be bounded by the number 
of bits of information. Future work should evaluate multiple accounts 
of the units in which TRWs are measured. The second simplifying 
assumption we made was that TRWs are fixed in size. Much recent evi-
dence suggests that human comprehension mechanisms can flexibly 
accommodate corrupt linguistic input, for example, due to speech 
errors (for example, refs. 59–61; see ref. 62 for a review), which may 
make it desirable for TRWs to be somewhat adaptable to allow for the 
possibility of continuously revising one’s interpretation of the input. 
Future work should seek to understand if and how the TRW of a specific 
neural population can be affected by linguistic context. And third, the 
response function (kernel) that we used to generate the simulated 
signals was intentionally simple and was not designed to be fully con-
sistent with the underlying neurophysiology (see Methods for details). 
A model that is more faithful to neurobiological principles may better 
capture the observed neural responses and such models should be 
explored in future work.

Finally, our toy TRW model currently does not take into account 
the form and content of the stimulus, as it does not use any linguistic 
information to generate responses. However, responses of neural 
populations in the language network are highly sensitive to linguistic 
stimulus properties. One key modulator of response strength is how 
well the stimulus matches natural language statistics, as evidenced 
by both condition-level effects (for example, sentences > word lists; 
ref. 1) and fine-grained preferences for particular linguistic strings63. 
A more complete model of language processing should therefore 
include both ‘gating’ of linguistic input into different lengths of effec-
tive input (defined by a neural population’s TRW) and ‘scaling’ of the 
neural response by the effective input’s probability. This idea—that 
responses of neural populations in the language network reflect the 
probability of linguistic inputs at variable context lengths due to their 
TRW—may explain why the Sentence and Word-list conditions were best 
discriminated by Cluster 1 populations. In particular, Cluster 1 popu-
lations have the longest TRW, and the linguistic difference between 
sentences and word lists becomes more apparent over longer time-
scales (Extended Data Fig. 5). We leave more thorough exploration of 
stimulus-dependent accounts of the computations carried out by the 
language network to future work (see ‘Future directions’).

The spatially distributed nature of language processing
There is a long history in language neuroscience of attempts to 
divide language comprehension into both temporally distinct stages 
and spatially distinct components. At some level, language comprehen-
sion can indeed be broken up across time and space. In particular, clear 

separation exists between the language-processing system7 and both (1) 
lower-level perceptual areas and (2) higher-level cognitive areas (see ref. 
12 for a review). During language perception, the lower-level perceptual 
areas, such as the speech perception area42,43,64 and the visual word-form 
area65, process information ‘earlier’ than, and probably provide input 
to, the language network. And higher-level cognitive areas, such as 
the areas of the Default network66 or the Theory of Mind network67, 
process information ‘later’ than, and probably receive input from, 
the language network. These latter areas plausibly carry out further 
processing on the meaning representations extracted from language, 
including connecting those meaning representations across long 
spans of time32,68. However, discovering spatial subdivisions ‘within’ 
the language-selective network proper has proven challenging1,22,23,33,36.

The current work demonstrates that there exist functional differ-
ences within the language network, but functionally distinct popula-
tions do not seem to exhibit strong spatial clustering and are instead 
distributed in an interleaved fashion across the language network. The 
latter explains why most past fMRI work could not reveal this functional 
heterogeneity (cf. ref. 35 for implied functional heterogeneity based 
on multivariate patterns of fMRI response; and see ref. 34 for evidence 
of voxel-level heterogeneity with respect to TRWs as discovered in an 
encoding approach with artificial neural network language models). 
This architectural design makes it possible for each area of the network 
to have access to information at different timescales, which probably 
makes language processing efficient and robust. A clear exception in 
our data is the concentration of Cluster 3 (shortest-TRW) electrodes 
in the posterior superior temporal gyrus, which may suggest that this 
area serves a unique computational role within the language network 
(see refs. 69,36 for other recent evidence of the special role of this 
area); however, we cannot rule out the possibility that these electrodes 
are picking up some activity from the nearby speech areas42. We also 
acknowledge that a macroscale organization could become more 
evident with more participants and a more systematic coverage of the 
frontal and temporal cortex.

Future directions
The current findings lay the foundation for several exciting future 
research avenues. First, the size of a neural unit’s TRW should deter-
mine its sensitivity to different linguistic features. As noted above, one 
limitation of the current investigation is the focus on condition-level 
differences, rather than trying to explain fine-grained responses to 
individual linguistic items. The reason for this choice is twofold. To 
start, the current linguistic materials were not constructed with the 
goal of investigating linguistic (for example, lexical and syntactic) 
features; to make the materials easy to process for diverse populations, 
the sentences were constructed to be short and to use common struc-
tures and words, which limits the range of variability to be explored. In 
addition, we did not observe reliable stimulus-related activity (beyond 
the level of conditions; see OSF37). However, the TRW-based framework 
makes clear predictions that can be evaluated in future work. For exam-
ple, short-TRW populations should show greater sensitivity to lexical 
features, such as word frequencies, whereas longer-TRW populations 
should be more sensitive to linguistic features at longer timescales, such 
as higher-order n-gram frequencies and syntactic-structure-related 
features. Because many linguistic features are strongly intercorrelated 
in naturalistic language materials70,71 (see OSF37 for evidence of intercor-
relation of linguistic features in the current stimuli), evaluating these 
predictions will require constructing materials that are specifically 
designed to best dissociate different linguistic dimensions.

Second, artificial neural network (ANN) language models, which 
have proven to be powerful tools for understanding the human lan-
guage system31,34,72 (see ref. 73 for a review), could be leveraged to gain 
insights into the constraints on the language processing architecture. 
For example, do successful language architectures require particular 
proportions of units with different TRWs or particular distributions of 
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such units within and/or across model layers? In Dataset 1, we found 
the fewest electrodes belonging to Cluster 3 (shortest TRW), more 
electrodes belonging to Cluster 2 (intermediate TRW) and the majority 
of electrodes belonging to Cluster 1 (longest TRW). These propor-
tions align with the idea that compositional semantic space is highly 
multidimensional, but word-form information can be represented 
in a relatively low-dimensional space74. However, the proportions 
can also be affected by biases in where intracranial electrodes tend 
to be implanted, so investigating these questions in ANNs, where 
we can probe all units in the network75 and have the freedom to alter 
the architecture in various ways34, may yield insights that cannot be 
gained from human brains at least with the current experimental 
tools available.

And third, we have here focused on language comprehension. 
However, the same language network also supports language produc-
tion76,77. Whether the TRW-based organization discovered here in a 
language comprehension task applies to language production, given 
that utterance planning is known to unfold at multiple scales78, remains 
to be determined.

In conclusion, across two intracranial-recording datasets, we here 
demonstrate the existence of functionally distinct neural populations 
within the fronto-temporal language-selective network proper, open-
ing the door to investigations of how these populations work together 
to accomplish the incredible feats of language comprehension and 
production.

Methods
Participants
Dataset 1 (also used in ref. 27): Electrophysiological data were 
recorded from intracranial electrodes in 6 participants (5 female, 
aged 18–29 years) with intractable epilepsy. These participants under-
went temporary implantation of subdural electrode arrays at Albany 
Medical Center to localize epileptogenic zones and to delineate them 
from eloquent cortical areas before brain resection. Patients with a 
verbal IQ score >70, as defined by the Wechsler Abbreviated Scale of 
Intelligence-Second Edition (WASI-II, ref. 79), and general verbal pro-
ficiency, as qualitatively evaluated by the experimenters collecting 
the data, were eligible to participate in the study. The administration 
of the task was prioritized in patients with left hemisphere frontal and 
temporal coverage. All participants gave informed written consent 
to participate in the study, which was approved by the Institutional 
Review Board of Albany Medical Center (protocol number #2061). The 
participants were not compensated for their participation. One further 
participant was tested but excluded from analyses because of difficul-
ties in performing the task (that is, pressing multiple keys, looking away 
from the screen) during the first five runs. After the first five runs, the 
participant required a long break during which a seizure occurred.

Dataset 2: Electrophysiological data were recorded from intrac-
ranial electrodes in 16 participants (4 female, aged 21–66 years) with 
intractable epilepsy. These participants underwent temporary implan-
tation of subdural electrode arrays and depth electrodes to localize 
epileptogenic zones before brain resection at one of four sites: Albany 
Medical Center (AMC), Barnes-Jewish Hospital (BJH), Mayo Clinic 
Jacksonville (MCJ) and St Louis Children’s Hospital (SLCH). Patients 
with a verbal IQ score >70, as defined by the Wechsler Abbreviated 
Scale of Intelligence-Second Edition (WASI-II,79), and general verbal 
proficiency, as qualitatively evaluated by the experimenters collect-
ing the data, were eligible to participate in the study. All participants 
gave informed written consent to participate in the study, which was 
approved by the Institutional Review Board at each relevant site (pro-
tocols #2061 (AMC), #18-011810 (MCJ) and #201102222 (BJH, SLCH)). 
The participants were not compensated for their participation. Two 
further participants were tested but excluded from analyses due to the 
lack of any language-responsive electrodes (see ‘Language-responsive 
electrode selection’).

Data collection
Dataset 1: The implanted electrode grids consisted of platinum-iridium 
electrodes that were 4 mm in diameter (2.3–3 mm exposed) and spaced 
with an inter-electrode distance of 0.6 or 1 cm. The total numbers of 
implanted grid/strip electrodes were 120, 128, 98, 134, 98 and 36 for the 
6 participants, respectively (Table 1). Electrodes were implanted in the 
left hemisphere for all participants except P6, who had bilateral cover-
age (16 left hemisphere electrodes). Signals were digitized at 1,200 Hz.

Dataset 2: The implanted electrode grids and depth electrodes 
consisted of platinum-iridium electrodes. Implanted grid contacts were 
spaced at 0.6 or 1 cm (2.3–3 mm exposed), while sEEG leads were spaced 
3.5–5 mm depending on the trajectory length, with 2 mm exposed. The 
total numbers of implanted electrodes by participant can be found in 
Table 2 (average = 167 electrodes; s.d. = 51; range 92–234), along with 
the frequencies at which the signals were digitized. Electrodes were 
implanted in only the left hemisphere for 2 participants, in only the 
right hemisphere for 2 participants, and bilaterally for 12 participants 
(Table 2). All participants, regardless of the lateralization of their cover-
age, were included in all analyses.

For both datasets, recordings were synchronized with stimulus 
presentation and stored using the BCI2000 software platform (v.3.6, 
ref. 80).

Cortical mapping
Electrode locations were obtained from post-implantation computer-
ized tomography (CT) imaging and co-registered with the 3D surface 
model of each participant’s cortex, created from the preoperative 
anatomical MRI image, using the VERA software suite81,82. Electrode 
locations were then transformed to MNI space within VERA via non-
linear co-registration of the participants’ skull-stripped anatomical 
scan and the skull-stripped MNI152 Freesurfer template using ANTs83.

Preprocessing and extraction of signal envelope
Neural recordings were collected and saved in separate data files by 
run (see ‘Experiment’, and Tables 1 and 2), and all preprocessing pro-
cedures were applied ‘within’ data files to avoid inducing artefacts 
around recording breaks.

First, the ECoG/sEEG recordings were high-pass filtered at the 
frequency of 0.5 Hz, and line noise was removed using IIR notch filters 
at 60, 120, 180 and 240 Hz. The following electrodes were excluded 
from analysis: (1) ground, (2) reference and (3) those that were not 
ECoG or sEEG contacts (for example, microphone electrodes, trig-
ger electrodes, scalp electroencephalography (EEG) electrodes, EKG 
electrodes), as well as (4) those with significant line noise, defined as 
electrodes with line noise greater than 5 s.d. above other electrodes, 
(5) those with large artefacts identified through visual inspection and, 
for all but four participants, (6) those that had a significant number of 
interictal discharges identified using an automated procedure84. For 
4 participants (P3 in Dataset 1 and P15, P17 and P21 in Dataset 2), elec-
trodes that were identified as having a significant number of interictal 
discharges were not excluded from analyses because more than 1/3 of 
each of these participants’ electrodes fit this criterion. These exclusion 
criteria left 108, 115, 92, 106, 93 and 36 electrodes for analysis for the 6 
participants in Dataset 1 (Table 1) and between 76 and 228 electrodes 
for the 16 participants in Dataset 2 (Table 2).

Next, the common average reference (from all electrodes con-
nected to the same amplifier) was removed for each timepoint sepa-
rately. The signal in the high-gamma frequency band (70 Hz–150 Hz) 
was then extracted by taking the absolute value of the Hilbert transform 
of the signal extracted from 8 Gaussian filters (centre frequencies: 73, 
79.5, 87.8, 96.9, 107, 118.1, 130.4 and 144; s.d.: 4.68, 4.92, 5.17, 5.43, 5.7, 
5.99, 6.3 and 6.62, respectively, as in for example, ref. 85). The resulting 
envelopes from each of the Gaussian filters were averaged into one 
high-gamma envelope. We focused on the high-gamma frequency 
range because this component of the signal has been shown to track 
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neural activity most closely86. Linear interpolation was used to remove 
data points whose magnitude was more than 5 times the 90th percen-
tile of all magnitudes41, and we downsampled the signal by a factor of 
4 (Matlab procedure ‘resample’). For all data analyses, basic Matlab 
(v.2021a) functions were used.

Finally, the data were z-scored and normalized to a minimum/
maximum value of 0/1 to allow for comparisons across electrodes, 
and the signal was downsampled further to 60 Hz (regardless of the 
participant’s native sampling frequency, Matlab procedure ‘resam-
ple’) to reduce noise and standardize the sampling frequency across 
participants. For the participants who performed a slower version 
of the paradigm (for example, words presented for 700 ms each; see 
‘Experiment’), the signal was time warped to a faster rate (words pre-
sented for 450 ms each) so that timecourses could be compared across 
participants. This time warping was done by interpolation (Matlab 
procedure ‘interp1’).

Experiment
Dataset 1: In an event-related design, participants read sentences, lists 
of words, Jabberwocky sentences and lists of non-words. All stimuli 
were eight words/non-words long. The materials were adapted from 
ref. 1 and the full details of stimulus construction are described in the 
original publication. In short, sentences were manually constructed 
to cover a wide range of topics using various syntactic structures. Sen-
tences were intended to be easily read, to fit participants with diverse 
clinical conditions, and only included mono- and bi-syllabic words. The 
full list of materials is available on OSF37. The word lists were created by 
scrambling the words from the sentences. Jabberwocky sentences were 
created from the sentences by removing content words (for example, 
nouns, verbs and so on), but leaving the syntactic frame, consisting 
of function words (for example, articles, conjunctions, prepositions, 
pronouns and so on), intact. Content words were replaced with other 
pronounceable non-words, matched for length (in syllables). Lastly, 
the non-word lists were generated by scrambling the words/non-words 
from the Jabberwocky condition. Originally, a set of 160 items per 
condition were created and here, 80 or 60 items of those were used 
(depending on stimulus presentation rate, as detailed below).

Each event (trial) consisted of eight words/non-words, presented 
one at a time at the centre of the screen. At the end of each sequence, 
a memory probe was presented (a word in the Sentence and Word-list 
conditions, and a non-word in the Jabberwocky and Non-word-list con-
ditions) and participants had to decide whether the probe appeared in 
the preceding sequence by pressing one of two buttons. Two different 
presentation rates were used: P1 (Pn stands for Participant n), P5 and P6 
viewed each word/non-word for 450 ms (fast timing), and P2, P3 and P4 
viewed each word/non-word for 700 ms (slow timing). The presenta-
tion speed was determined before the experiment on the basis of the 
participant’s preference. After the last word/non-word in the sequence, 
a fixation cross was presented for 250 ms, followed by the probe item 
(1,400 ms fast timing, 1,900 ms slow timing) and a post-probe fixation 
(250 ms). Behavioural responses were continually recorded, but only 
responses 1 s before and 2 s after the probe were considered for calcu-
lating behavioural performance (Supplementary Table 10). Participants 
performed best on the Sentence trials and worst on the Non-word-list 
trials, with an average accuracy across all conditions of 81.01% (Sup-
plementary Table 10). After each trial, a fixation cross was presented 
for a variable amount of time, semi-randomly selected from a range of 
durations from 0 to 11,000 ms, to obtain a low-level baseline for neural 
activity and avoid predictability effects.

Trials were grouped into runs to give participants short breaks 
throughout the experiment. In the fast-timing version of the experi-
ment, each run included 8 trials per condition and lasted 220 s, and in 
the slow-timing version, each run included 6 trials per condition and 
lasted 264 s. The total amount of intertrial fixation in each run was 
44 s for the fast-timing version and 72 s for the slow-timing version.  

All participants completed 10 runs of the experiment, for a total of 80 
trials per condition in the fast-timing version and 60 trials per condition 
in the slow-timing version. P1 was accidentally shown one run twice and 
consequently saw only 9 unique runs for a total of 72 trials per condition 
(as they opted for the fast presentation rate).

Dataset 2: In an event-related design that was similar to the one 
used in Dataset 1, participants read sentences and lists of non-words. 
The other two conditions used in Dataset 1 (lists of words and Jabber-
wocky sentences) were not included. The materials were adapted from 
a version of the language localizer in use in the Fedorenko lab87. The 
sentences came from a language corpus (Brown corpus; ref. 88) where 
we searched for 12-word-long sentences and chose a diverse set among 
those. The non-words were created using the Wuggy software to match 
the words from the sentences on low-level phonology.

Each event (trial) consisted of 12 words/non-words, presented 
one at a time at the centre of the screen. At the end of each sequence, 
a memory probe was presented (a word in the Sentence condition 
and a non-word in the Non-word-list condition) and participants had 
to decide whether the probe appeared in the preceding sequence by 
pressing one of two buttons. Two presentation rates were used: 600 ms 
per word/non-word (medium timing) and 750 ms per word/non-word 
(slow timing; see Table 2 for a description of the presentation rates 
by participant). The presentation speed was determined before the 
experiment on the basis of the participant’s preference. After the last 
word/non-word in the sequence, a fixation cross was presented for 
400 ms, followed by the probe item (1,000 ms for both fast and slow 
timing) and a post-probe fixation (600 ms). Behavioural responses 
were continually recorded, but only responses 1 s before and 2 s after 
the probe were considered for calculating behavioural performance 
(Supplementary Table 11). As in Dataset 1, participants performed best 
on the Sentence trials and worse on the Non-word-list trials. However, 
in this sample of participants, there was substantial individual vari-
ability in the consistency and accuracy of responses (Supplementary 
Table 11). On average, participants provided a correct response 68.57% 
of the time (Supplementary Table 11). After each trial, a fixation cross 
was presented for a variable amount of time, semi-randomly selected 
from a range of durations from 0 to 6,000 ms.

Trials were grouped into runs to give participants short breaks 
throughout the experiment. In the medium-timing version of the 
experiment, each run included 36 trials per condition and lasted ~898 s, 
and in the slow-timing version, each run included 24 trials per condi-
tion and lasted 692 s. The total amount of intertrial fixation in each run 
was 216 s for the medium-timing version and 144 s for the slow-timing 
version. One participant (P7) saw a modified slow-timing version of 
the paradigm where only 48 of the full 72 items per condition were 
shown. Thirteen participants completed 2 runs of the experiment (all 
saw the medium-timing version, 72 trials per condition), 2 participants 
completed 3 runs of the experiment (one saw the slow-timing version, 
72 trials per condition; and the other saw the modified slow-timing ver-
sion, 48 trials per condition) and 1 participant completed 1 run of the 
experiment (medium-timing version, 36 trials per condition, Table 2).

For all clustering analyses, only the first eight words/non-words 
of the stimulus were used to ensure that the length of the timecourses 
being analysed was the same across Datasets 1 and 2.

Language-responsive electrode selection
In both datasets, we identified language-responsive electrodes as 
electrodes that respond significantly more (on average, across tri-
als) to sentences (the S condition) than to perceptually similar but 
linguistically uninformative (that is, meaningless and unstructured) 
non-word lists (the N condition). First, the envelope of the high-gamma 
signal was averaged across word/non-word positions (8 positions in 
the experiment used in Dataset 1 and 12 positions in the experiment 
used in Dataset 2) to construct an ‘observed’ response vector for each 
electrode (1 × nTrialsS + nTrialsN; the number of trials, across the S and 
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N conditions, which varied by participant between 72 and 160). The 
observed response vector was then correlated (using Spearman’s cor-
relation) with an ‘idealized’ language response vector, where Sentence 
trials were assigned a value of 1 and Non-word-list trials, a value of −1. 
The values in the ideal response vector were then randomly permuted 
without replacement and a new correlation was computed. This process 
was repeated 10,000 times for each electrode separately to construct 
a null distribution (with shuffled labels) relative to which the true cor-
relation between the observed values and the ‘idealized’ values could 
be evaluated. Electrodes were determined to be language responsive 
if the observed vs idealized correlation was greater than 95% of the 
correlations computed using the permuted idealized response vec-
tors (equivalent to P < 0.05). (We chose a liberal significance threshold 
to maximize the number of electrodes to be included in the critical 
analyses and to increase the chances of discovering distinct response 
profiles.) The majority of the language-responsive electrodes (98.3% 
in Dataset 1, 53.9% in Dataset 2) fell in the left hemisphere, but we used 
electrodes across both hemispheres in all analyses (see ref. 87 for 
evidence of a robust right-hemisphere component of the language 
network in a dataset of >800 participants).

Clustering analysis
Using Dataset 1 (6 participants, 177 language-responsive electrodes), we 
created a single timecourse per electrode by concatenating the average 
timecourses across the four conditions (sentences (S), word lists (W), 
Jabberwocky sentences ( J), non-word lists (N), note that the order of the 
conditions concatenated did not matter since the distance metric was 
correlation-based). All the timepoints of the concatenated timecourses 
(864 data points: 60 Hz × 4 conditions × 3.6 s per trial after resampling) 
served as input to a k-medoids clustering algorithm89. k-medoids is a 
clustering technique that divides data points (electrodes in our case) 
into k groups, where k is predetermined. The algorithm attempts to 
minimize the distances between each electrode and the cluster centre, 
where cluster centres are represented by ‘medoids’ (exemplar electrodes 
selected by the algorithm) and the distance metric is correlation-based. 
k-medoids clustering was chosen over the more commonly used k-means 
clustering to allow for the use of a correlation-based distance metric as 
we were most interested in the shape of the timecourses over their scale 
which can vary due to cognitively irrelevant physiological differences 
(but see OSF37 for evidence that similar clusters emerge with a k-means 
clustering algorithm using a Euclidean distance).

Optimal number of clusters
To determine the optimal number of clusters, we used the ‘elbow’ 
method90 which searches for the value of k above which the increase 
in explained variance becomes more moderate. For each k (between 
2 and 10), k-medoids clustering was performed, and explained vari-
ance was computed as the sum of the correlation-based distances of 
all the electrodes to their assigned cluster centre and normalized to 
the sum of the distances for k = 1 (equivalent to the variance of the full 
dataset). This explained variance was plotted against k and the ‘elbow’ 
was determined as the point above which the derivative became more 
moderate. We plotted the derivative of this curve as well for easier 
inspection of the transition point. We also repeated the elbow method 
while enforcing a parametrically sampled electrode-reliability thresh-
old (from 0.1 to 0.4 in increments of 0.1) to further examine our choice 
of k. If the chosen k does, in fact, appropriately describe the data, we 
would expect the strength of the elbow (that is, the drop in explained 
variance for k + 1) to increase when more electrodes are excluded based 
on their lower reliability.

Partial correlation of individual electrodes with each of the 
cluster medoids
To evaluate the extent to which the observed responses (electrodes) 
can be attributed to a single profile (cluster), we computed partial 

correlations of every electrode’s mean timecourse with that of each of 
the cluster medoids while controlling for the other two cluster 
medoids. For instance, take rs1C1,C2C3 as the partial correlation between 
a signal s1 and Cluster 1 medoid C1, while controlling for the Cluster 2 
medoid C2 and Cluster 3 medoid C3. rs1C1,C2C3 can be computed by fol-
lowing these steps; (1) performing a multiple regression analysis with 
s1 as the dependent variable and C2 and C3 as the independent varia-
bles, obtaining the residual e1; (2) performing a multiple regression 
analysis with C1 as the dependent variable and C2 and C3 as the inde-
pendent variable, obtaining the residual e2; and (3) calculating the 
correlation coefficient between the residuals e1 and e2. This is the 
partial correlation rs1C1,C2C3. The analysis was performed using Matlab’s 
‘partialcorr’ procedure.

Cluster stability across trials
We evaluated the stability of the clustering solution by performing the 
same clustering procedure as described above (Clustering analysis) 
using only half of the trials. To evaluate the similarity of the clusters 
derived on the basis of only half of the trials to the clusters derived 
on the basis of all trials, we first had to determine how clusters cor-
responded between any two solutions. In particular, given that the 
specific order of the clusters that the k-medoids algorithm produces 
depends on the (stochastic) choice of initial cluster medoids, the elec-
trodes that make up Cluster 1 in one solution may be labelled as Cluster 
2 in another solution. To determine cluster correspondence across solu-
tions, we matched the cluster centres (computed here as the average 
timecourse of all electrodes in a given cluster) from a solution based 
on half of the trials to the most highly correlated cluster centres from 
the solution based on all trials.

We then conducted a permutation analysis to statistically compare 
the clustering solutions. This was done separately for each of the two 
halves of the data (odd- and even-numbered subsets of trials). Under 
the null hypothesis, no distinct response profiles should be detect-
able in the data and consequently, responses in one electrode should 
be interchangeable with responses in another electrode. Using half 
of the data, we shuffled average responses across electrodes (within 
each condition separately, thus disrupting the relationship between 
the conditions for a given electrode while leaving the distribution of 
within-condition average responses intact), reclustered the electrodes 
into 3 clusters and then correlated the resulting cluster centres to the 
‘corresponding’ cluster centres from the full dataset. This permutation 
test was determined to be more conservative than shuffling individual 
trials across electrodes (within each condition separately). Accordingly, 
comparisons remained significant when shuffling individual trials. We 
repeated this process 1,000 times to construct a null distribution of the 
correlations for each of the 3 clusters. These distributions were used 
to calculate the probability that the correlation between the clusters 
across the two solutions using the actual, non-permuted data was 
higher than would be expected by chance.

Cluster robustness to data loss
We evaluated the robustness of the clustering solution to loss of elec-
trodes to ensure that the solution was not driven by particular elec-
trodes or participants.

To evaluate the similarity of the clusters derived on the basis of 
only a subset of language-responsive electrodes to the clusters derived 
on the basis of all electrodes, we progressively removed electrodes 
from the full set (n = 177) until only 3 electrodes remained (the mini-
mal number of electrodes required to split the data into 3 clusters) in 
increments of 5. Each subset of electrodes was clustered into 3 clusters, 
and the cluster centres were correlated with the corresponding cluster 
centres (see ‘Cluster stability across trials’ above) from the full set of 
electrodes. For each subset of electrodes, we repeated this process 100 
times, omitting a different random set of n electrodes with replacement 
and computed the average correlation across repetitions.
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To statistically evaluate whether the clustering solutions with only 
a subset of electrodes were more similar to the solution on the full set 
of electrodes on average (across the 100 repetitions at each subset size) 
than would be expected by chance, we conducted a permutation analysis 
similar to the one described in ‘Cluster stability across trials’. In particu-
lar, using the full dataset, we shuffled individual trials across electrodes 
(within each condition separately), reclustered the electrodes into  
3 clusters and then correlated the resulting cluster averages to cluster 
averages from the actual, non-shuffled data. We repeated this process 
1,000 times to construct a null distribution of the correlations for each 
of the 3 clusters. These distributions were used to calculate the prob-
ability that the correlation between the clusters across the two solutions 
using the actual, non-permuted data (a solution on all the electrodes 
and a solution on a subset of the electrodes) was higher than would be 
expected by chance. To err on the conservative side, we chose the null 
distribution for the cluster with the highest average correlation in the 
permuted version of the data. For each subset of electrodes, if the average 
correlation (across the 100 repetitions) fell below the 95th percentile of 
the null distribution, this was taken to suggest that the clustering solution 
based on a subset of the electrodes was no longer more correlated to the 
solution on the full set of electrodes than would be expected by chance.

Electrode locking to onsets of individual words/non-words
To estimate the degree of stimulus locking for each electrode and 
condition separately, we fitted a sinusoidal function that represented 
the stimulus train to the mean of the odd trials and then computed the 
Pearson correlation between the fitted sinusoidal function and the 
mean of the even trials. For the sinusoidal function fitting, we assumed 
that the frequency of the sinusoidal function was the frequency of 
stimulus presentation, and we fitted the phase, amplitude and offset 
of the sinusoid by searching parameter combinations that minimized 
the sum of squared differences between the estimated sinusoidal func-
tion and the data. Cross-validation (fitting on odd trials and computing 
the correlation on even trials) ensured non-circularity. To statistically 
quantify differences in the degree of stimulus locking between the clus-
ters and among the conditions, we ran an LME model, using the Matlab 
procedure ‘fitlme’, regressing the locking values of all electrodes and 
conditions on the fixed-effects categorical variable of ‘cluster’ (with 3 
levels for Clusters 1, 2 or 3 according to which cluster each electrode 
was assigned to) and ‘condition’ (with 4 levels for conditions S, W, J, N), 
both grouped by the random-effects variable of ‘participant’, as well 
as a fixed interaction term between ‘cluster’ and ‘condition’, using the 
Wilkinson formula91:

Locking ∼ 1 + cluster ∗ condition

+(cluster|participant) + (condition|participant)
(1)

An ANOVA test for LME models was used to determine the main effects 
of ‘cluster’ and ‘condition’ and their interaction. Pairwise comparisons 
of all 3 clusters and 4 conditions as well as interactions between all 
(cluster, condition) pairs were extracted from the model estimates.

Electrode discrimination between conditions
To examine the timecourse of condition divergence, as quantified by 
the electrodes’ ability to linearly discriminate between the magnitudes 
of pairs of conditions, we focused on condition pairs that critically dif-
fer in their engagement of particular linguistic processes: conditions 
S and W, which differ in whether they engage combinatorial (syntactic 
and semantic) processing (S=yes, W=no), conditions W and N, which 
differ in whether they engage word meaning processing (W=yes, N=no), 
and conditions J and N, which differ in whether they engage syntactic 
processing ( J=yes, N=no). This analysis tests how early the relevant pair 
of conditions reliably diverge and the strength of that divergence. For 
every electrode, the mean response to the three conditions of interest  
(S, W and N) was averaged across 100 ms bins with a 100 ms sliding 

window. For each cluster separately, a binary logistic classifier (selected 
from the best of 20 random instantiations; performed using Matlab’s 
‘fitclinear’ procedure) was trained to discriminate S from W, W from 
N, or J from N at each time bin using the binned neural signal up to, 
and including, that time bin. Each classifier was trained using 10-fold 
cross-validation (train on 90% of the data and test using the remaining 
10%, repeated for 10 splits of the data such that every observation was 
included in the test set exactly once). The predicted and actual condi-
tions across all folds were used to calculate accuracy (the percent of mean 
responses from all electrodes in a particular cluster correctly classified 
as S/W, W/N, or J/N). The performance of the model at a given time bin 
was statistically evaluated using a cluster permutation test to control 
for multiple comparisons and account for the autocorrelation structure 
of the signals38,39. This was done by shuffling the condition labels 1,000 
times for each time bin to simulate surrogate data. For each surrogate 
data repetition, we computed the sum of consecutive t-values that passed 
some arbitrary t-value threshold, referred to as the t-sum statistics. We 
chose a t-value threshold corresponding to an alpha level of 0.05. Using 
the t-sum values from the 1,000 permutations, we constructed a null 
distribution for this t-sum statistic and then compared it to the same 
t-sum statistic computed from the real data to assess significance.

Computing n-gram frequencies of Sentence and Non-word 
stimuli
N-gram frequencies were extracted from the Google n-gram online plat-
form (https://books.google.com/ngrams/), averaging across Google 
books corpora between the years 2010 and 2020. The n-gram frequency 
for n = 1 is the frequency of that individual word in the corpus; the 
n-gram frequency for n = 2 is the frequency of the bigram (sequence 
of 2 words) ending in, and including, that word; the n-gram frequency 
for n = 3 is the frequency of the trigram (sequence of 3 words) ending 
in, and including, that word and so on. Sequences that were not found 
in the corpus were assigned a value of 0.

Estimation of temporal receptive window size per electrode
We used a simplified model to simulate neural responses in the Sen-
tence (S) condition as a convolution of a stimulus train and truncated 
Gaussian kernels with varying widths. The kernels represented an 
evoked ‘response function’ with a width (σ) corresponding to the 
temporal receptive window (TRW) of an idealized neural population 
underlying the intracranial responses measured by a single electrode. 
The kernels were constructed from Gaussian curves with a standard 
deviation of σ/2 truncated at ±1 s.d. (capturing 2/3 of the area under 
the Gaussian). We then normalized the truncated Gaussians to have a 
minimum of 0 and maximum of 1. We chose a symmetric kernel because 
we wanted to capture the full assumed TRW for a straightforward inter-
pretation of the fitted window size. For instance, a long-tailed response 
function would have a shorter ‘effective’ receptive window because 
the tails of the kernel would affect the neural response much less than 
the centre of the kernel. We further chose a kernel with smooth edges 
because we assumed that neural activity in response to a stimulus would 
increase and decrease gradually (cf. an abrupt change of voltage such 
as in a boxcar shape), given that macroelectrodes sum activity from a 
large neural population86. Furthermore, we assumed that the TRW for 
a given neural population was ‘fixed’, but see Discussion.

We also verified that the specific shape of kernel did not affect 
our main result. We tested five different response functions: cosine, 
‘wide’ Gaussian (Gaussian curves with a standard deviation of σ/2 that 
were truncated at ±1 s.d., as used in the manuscript), ‘narrow’ Gaussian 
(Gaussian curves with a standard deviation of σ/16 that were truncated 
at ±8 s.d.), a square (that is, boxcar) function (1 for the entire window) 
and a linear asymmetric function (linear function with a value of 0 
initially and a value of 1 at the end of the window).

The stimulus train took a value of 1 at the time of word onsets and 
0 otherwise, assuming, for simplicity, that the minimal stimulus unit 
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of interest for language-responsive neural populations is a word (cf. for 
example, refs. 53,25 for evidence that the language network is sensitive 
to sublexical structure). Neural responses were simulated for σ rang-
ing from one-third of a word to 8 words (the length of our stimuli), in 
1 sample increments (1/27th of a word, the highest resolution we were 
able to evaluate given our sampling rate of 60 Hz). Our implementation 
of the convolution is identical to assuming that the kernels appear as 
evoked responses starting at each word onset (see OSF37). The length of 
the evoked response/kernel is directly mapped onto a longer temporal 
receptive window, such that when a stimulus evokes a wider response, 
its effect will remain for a longer period of time.

To find the best fit of the temporal receptive window size for each 
electrode after simulating neural signals using this toy model, we 
selected the TRW size that yielded the highest correlation between the 
simulated neural response (also normalized to be between 0 and 1) and 
the actual neural response. The value of the correlation was taken as a 
proxy for the goodness of fit.

To evaluate significance, we ran LME models regressing the 
estimates of temporal receptive window sizes (σ) of all electrodes 
on the fixed-effects categorical variable of ‘cluster’ grouped by the 
random-effects variable of ‘participant’. Cluster was dummy coded as 
a categorical variable with three levels, and Cluster 1 was treated as the 
baseline intercept. This approach allowed us to compare electrodes 
in Cluster 2 to those in Cluster 1, and electrodes in Cluster 3 to those 
in Cluster 1. To additionally compare electrodes in Clusters 2 vs 3, we 
ran another similar LME model with the only difference being that the 
baseline intercept was now the Cluster 2 category (Supplementary 
Tables 5–9). To account for the small number of participants in Dataset 
1, we used the Satterthwaite method92.

Anatomical topography analysis
We examined the anatomical topographic distribution of the elec-
trodes that exhibited the three temporal response profiles (clusters) 
discovered in Dataset 1. Specifically, we probed the spatial relationships 
between all electrodes that belong to different clusters (for example, 
electrodes in Cluster 1 vs 2) with respect to the two axes: anterior- 
posterior ( y) and inferior-superior (z). This approach allowed us to ask 
whether, for example, electrodes that belong to one cluster tend to con-
sistently fall posterior to the electrodes that belong to another cluster.

To do this, we extracted the MNI coordinates of all the electrodes 
in each of the three clusters and ran LME models regressing each of the 
coordinates (either y or z) on the fixed-effects categorical variable of 
‘cluster’ grouped by the random-effects variable of ‘participant’, using 
the Wilkinson formula91:

Coordinate ∼ 1 + cluster + (1 + cluster|participant) (2)

where ‘Coordinate’ is either the y or z MNI coordinate. The random 
effect that groups the estimates by participant ensures that electrode 
coordinates are compared within participants. This approach is crucial 
for accommodating inter-individual variability in the precise loca-
tions of language areas (for example, ref. 1), which means that the abso-
lute values of MNI coordinates cannot be easily compared between 
participants.

Cluster was dummy coded as a categorical variable with three 
levels and Cluster 1 was treated as the baseline intercept. This approach 
allowed us to compare electrodes in Cluster 2 to those in Cluster 1 and 
electrodes in Cluster 3 to those in Cluster 1. To additionally compare 
electrodes in Clusters 2 vs 3, we ran another similar LME model with the 
only difference being that the baseline intercept was now the Cluster 2 
category (Supplementary Tables 2–4). To account for the small num-
ber of participants in Dataset 1, we used the Satterthwaite corrective 
degree-of-freedom approximation method, combined with REML 
fitting for LME, which was shown to be most effective when using the 
Satterthwaite method92.

We repeated this analysis for Dataset 2, but we only examined Clus-
ters 1 and 3, which were robustly present in that dataset. We performed 
the analysis for the electrodes in the two hemispheres separately.

Replication of the clusters in Dataset 2
As described in ‘Experiment’, the design that was used for participants 
in Dataset 1 included four conditions: sentences (S), word lists (W), 
Jabberwocky sentences ( J) and non-word lists (N). Because the design 
in Dataset 2 included only two of the four conditions (S and N), we first 
repeated the clustering procedure for Dataset 1 using only the S and 
N conditions to test whether similar clusters could be recovered with 
only a subset of conditions.

We then applied the same clustering procedure to Dataset 2 (16 
participants, 362 language-responsive electrodes). The elbow method 
revealed that the optimal number of clusters in Dataset 2 is k = 2. How-
ever, because the optimal number of clusters in Dataset 1 was k = 3, 
we examined the clustering solutions for both k = 2 and k = 3. We also 
performed an analysis where we assigned electrodes in Dataset 2 to 
the most correlated Dataset 1 cluster (also termed “winner-take-all”). 
This analysis was intended to examine whether responses such as 
those found in Dataset 1 were at all present in Dataset 2 (even if they 
did not emerge as strongly through clustering); thus, the assignment 
of electrodes to a ‘group’ was done by correlation alone, and no actual 
clustering was performed.

To statistically compare the clustering solutions between Data-
sets 1 and 2 for k = 3, we used the same approach as the one described 
above (‘Stability of clusters across trials’). In particular, using Data-
set 2, we shuffled average responses across electrodes (within each 
condition separately), reclustered the electrodes into 3 clusters and 
then correlated the resulting cluster averages to the cluster aver-
ages from Dataset 1. We repeated this process 1,000 times to con-
struct a null distribution of the correlations for each of the 3 clusters. 
These distributions were used to calculate the probability that the 
correlation between the clusters across the two datasets using the 
actual, non-permuted Dataset 2 was higher than would be expected 
by chance.

To statistically compare the clustering solutions when k = 3 in 
Dataset 1 and k = 2 in Dataset 2, we used a similar procedure as the one 
described above. However, we only compared the resulting cluster 
centres from the permuted data to the two clusters in Dataset 1 that 
were most strongly correlated with the two clusters that emerged from 
Dataset 2 (that is, Clusters 1 and 3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Preprocessed data, all stimuli and statistical results, as well as selected 
additional analyses are available on OSF at https://osf.io/xfbr8/ (ref. 37). 
Raw data may be provided upon request to the corresponding authors 
and institutional approval of a data-sharing agreement.

Code availability
Code used to conduct analyses and generate figures from the pre-
processed data is available publicly on GitHub at https://github.com/
coltoncasto/ecog_clustering_PUBLIC (ref. 93). The VERA software suite 
used to perform electrode localization can also be found on GitHub at 
https://github.com/neurotechcenter/VERA (ref. 82).
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Extended Data Fig. 1 | Dataset 1 k-medoids (k = 3) cluster assignments by 
participant. Average cluster responses as in Fig. 2e grouped by participant. 
Shaded areas around the signal reflect a 99% confidence interval over electrodes. 
The number of electrodes constructing the average (n) is denoted above each 

signal in parenthesis. Prototypical responses for each of the three clusters were 
found in nearly all participants individually. However, for participants with 
only a few electrodes assigned to a given cluster (for example, P5 Cluster 3), the 
responses were more variable.
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Extended Data Fig. 2 | Dataset 1 k-medoids clustering with k = 10. a) 
Clustering mean electrode responses (S + W + J + N) using k-medoids with k = 10 
and a correlation-based distance. Shading of the data matrix reflects normalized 
high-gamma power (70–150 Hz). b) Electrode responses visualized on their 
first two principal components, colored by cluster. c) Timecourses of best 
representative electrodes (‘medoids’) selected by the algorithm from each of 

the ten clusters. d) Timecourses averaged across all electrodes in each cluster. 
Shaded areas around the signal reflect a 99% confidence interval over electrodes. 
Correlation with the k = 3 cluster averages are shown to the right of the 
timecourses. Many clusters exhibited high correlations with the k = 3 response 
profiles from Fig. 2.
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Extended Data Fig. 3 | All Dataset 1 responses. a-c) All Dataset 1 electrode 
responses. The timecourses (concatenated across the four conditions, ordered: 
sentences, word lists, Jabberwocky sentences, non-word lists) of all electrodes 
in Dataset 1 sorted by their correlation to the cluster medoid (medoid shown 
at the bottom of each cluster). Colors reflect the reliability of the measured 
neural signal, computed by correlating responses to odd and even trials (Fig. 
1d). The estimated temporal receptive window (TRW) using the toy model from 
Fig. 4 is displayed to the left, and the participant who contributed the electrode 
is displayed to the right. There was strong consistency in the responses from 
individual electrodes within a cluster (with more variability in the less reliable 

electrodes), and electrodes with responses that were more similar to the cluster 
medoid tended to be more reliable (more pink). Note that there were two reliable 
response profiles (relatively pink) that showed a pattern that was distinct from 
the three prototypical response profiles: One electrode in Cluster 2 (the 10th 
electrode from the top in panel B) responded only to the onset of the first word/
nonword in each trial; and one electrode in Cluster 3 (the 4th electrode from the 
top in panel C) was highly locked to all onsets except the first word/nonword. 
These profiles indicate that although the prototypical clusters explain a 
substantial amount of the functional heterogeneity of responses in the language 
network, they were not the only observed responses.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Partial correlations of individual response profiles 
with each of the cluster medoids. a) Pearson correlations of all response 
profiles with each of the cluster medoids, grouped by cluster assignment. b) 
Partial correlations (Methods) of all response profiles with each of the cluster 
medoids, controlling for the other two cluster medoids, grouped by cluster 
assignment. c) Response profiles from electrodes assigned to Cluster 1 that had 
a high partial correlation ( > 0.2, arbitrarily defined threshold) with the Cluster 2 
medoid (and split-half reliability>0.3). Top: Average over all electrodes that met 
these criteria (n = 18, black). The Cluster 1 medoid is shown in red, and the Cluster 
2 medoid is shown in green. Bottom: Four sample electrodes (black). d) Response 
profiles assigned to Cluster 2 that had a high partial correlation ( > 0.2, arbitrarily 

defined threshold) with the Cluster 1 medoid (and split-half reliability>0.3). Top: 
Average over all electrodes that meet these criteria (n = 12, black). The Cluster 1 
medoid is shown in red, and the Cluster 2 medoid is shown in green. Bottom: Four 
sample electrodes (black; see osf.io/xfbr8/ for all mixed response profiles with 
split-half reliability>0.3). e) Anatomical distribution of electrodes in Dataset 1 
colored by their partial correlation with a given cluster medoid (controlling for 
the other two medoids). Cluster-1- and Cluster-2-like responses were present 
throughout frontal and temporal areas (with Cluster 1 responses having a slightly 
higher concentration in the temporal pole and Cluster 2 responses having a 
slightly higher concentration in the superior temporal gyrus (STG)), whereas 
Cluster-3-like responses were localized to the posterior STG.
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Extended Data Fig. 5 | N-gram frequencies of sentences and word lists diverge 
with n-gram length. N-gram frequencies were extracted from the Google 
n-gram online platform (https://books.google.com/ngrams/), averaging across 
Google books corpora between the years 2010 and 2020. For each individual 
word, the n-gram frequency for n = 1 was the frequency of that word in the corpus; 
for n = 2 it was the frequency of the bigram (sequence of 2 words) ending in that 
word; for n = 3 it was the frequency of the trigram (sequence of 3 words) ending in 
that word; and so on. Sequences that were not found in the corpus were assigned 

a value of 0. Results are only presented until n = 4 because for n > 4 most of the 
string sequences, both from the Sentence and Word-list conditions, were not 
found in the corpora. The plot shows that the difference between the log n-gram 
values for the sentences and word lists in our stimulus set grows as a function 
of N. Error bars represent the standard error of the mean across all n-grams 
extracted from the stimuli used (640, 560, 480, 399 n-grams for n-gram length = 
1, 2, 3, and 4, respectively).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Temporal receptive window (TRW) estimates with 
kernels of different shapes. The toy TRW model from Fig. 4 was applied using 
five different kernel shapes: cosine (a), ‘wide’ Gaussian (Gaussian curves with a 
standard deviation of σ/2 that were truncated at +/− 1 standard deviation, as used 
in Fig. 4; b), ‘narrow’ Gaussian (Gaussian curves with a standard deviation of σ/16 
that were truncated at +/− 8 standard deviations; c), a square (that is, boxcar) 
function (1 for the entire window; d) and a linear asymmetric function (linear 
function with a value of 0 initially and a value of 1 at the end of the window; e). 
For each kernel (a-e), the plots represent (left to right, all details are identical to 
Fig. 4 in the manuscript): 1) The kernel shapes for TRW = 1, 2, 3, 4, 6 and 8 words, 
superimposed on the simplified stimulus train; 2) The simulated neural signals 
for each of those TRWs; 3) violin plots of best fitted TRW values across electrodes 

(each dot represents an electrode, horizontal black lines are means across the 
electrodes, white dots are medians, vertical thin box represents lower and upper 
quartiles and ‘x’ marks indicate outliers; more than 1.5 interquartile ranges above 
the upper quartile or less than 1.5 interquartile ranges below the lower quartile) 
for all electrodes (black), or electrodes from only Clusters 1 (red) 2 (green) or 
3 (blue); and 4) Estimated TRW as a function of goodness of fit. Each dot is an 
electrode, its size represents the reliability of its neural response, computed via 
correlation between the mean signals when using only odd vs. only even trials, 
x-axis is the electrode’s best fitted TRW, y-axis is the goodness of fit, computed 
via correlation between the neural signal and the closest simulated signal. For all 
kernels the TRWs showed a decreasing trend from Cluster 1 to 3.
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Extended Data Fig. 7 | Dataset 1 k-medoids clustering results with only 
S and N conditions. a) Search for optimal k using the ‘elbow method’. Top: 
variance (sum of the distances of all electrodes to their assigned cluster centre) 
normalized by the variance when k = 1 as a function of k (normalized variance 
(NV)). Bottom: change in NV as a function of k (NV(k + 1) – NV(k)). After k = 3 
the change in variance became more moderate, suggesting that 3 clusters 
appropriately described Dataset 1 when using only the responses to sentences 
and non-words (as was the case when all four conditions were used). b) Clustering 
mean electrode responses (only S and N, importantly) using k-medoids (k = 3) 
with a correlation-based distance. Shading of the data matrix reflects normalized 
high-gamma power (70–150 Hz). c) Average timecourse by cluster. Shaded areas 
around the signal reflect a 99% confidence interval over electrodes (n = 99, n = 61, 
and n = 17 electrodes for Cluster 1, 2, and 3, respectively). Clusters 1-3 showed a 

strong similarity to the clusters reported in Fig. 2. d) Mean condition responses 
by cluster. Error bars reflect standard error of the mean over electrodes. e) 
Electrode responses visualized on their first two principal components, colored 
by cluster. f ) Anatomical distribution of clusters across all participants (n = 6). 
g) Robustness of clusters to electrode omission (random subsets of electrodes 
were removed in increments of 5). Stars reflect significant similarity with the 
full dataset (with a p threshold of 0.05; evaluated with a one-sided permutation 
test, n = 1000 permutations; Methods). Shaded regions reflect standard error 
of the mean over randomly sampled subsets of electrodes. Relative to when all 
conditions were used, Cluster 2 was less robust to electrode omission (although 
still more robust than Cluster 3), suggesting that responses to word lists and 
Jabberwocky sentences (both not present here) are particularly important for 
distinguishing Cluster 2 electrodes from Cluster 1 and 3 electrodes.
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Extended Data Fig. 8 | Dataset 2 electrode assignment to most correlated 
Dataset 1 cluster under ‘winner-take-all’ (WTA) approach. a) Assigning 
electrodes from Dataset 2 to the most correlated cluster from Dataset 1. 
Assignment was performed using the correlation with the Dataset 1 cluster 
average, not the cluster medoid. Shading of the data matrix reflects normalized 
high-gamma power (70–150 Hz). b) Average timecourse by group. Shaded areas 
around the signal reflect a 99% confidence interval over electrodes (n = 142, 
n = 95, and n = 125 electrodes for groups 1, 2, and 3, respectively). c) Mean 
condition responses by group. Error bars reflect standard error of the mean 
over electrodes (n = 142, n = 95, and n = 125 electrodes for groups 1, 2, and 3, 
respectively, as in b). d) Electrode responses visualized on their first two principal 
components, colored by group. e) Anatomical distribution of groups across all 
participants (n = 16). f-g) Comparison of cluster assignment of electrodes from 

Dataset 2 using clustering vs. winner-take-all (WTA) approach. f ) The numbers 
in the matrix correspond to the number of electrodes assigned to cluster y 
during clustering (y-axis) versus the number electrodes assigned to group x 
during the WTA approach (x-axis). For instance, there were 44 electrodes that 
were assigned to Cluster 1 during clustering but were ‘pulled out’ to Group 2 (the 
analog of Cluster 2) during the WTA approach. The total number of electrodes 
assigned to each cluster during the clustering approach are shown to the right 
of each row. The total number of electrodes assigned to each group during the 
WTA approach are shown at the top of each column. N = 362 is the total number of 
electrodes in Dataset 2. g) Similar to F, but here the average timecourse across all 
electrodes assigned to the corresponding cluster/group during both procedures 
is presented. Shaded areas around the signals reflect a 99% confidence interval 
over electrodes.
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Extended Data Fig. 9 | Anatomical distribution of the clusters in Dataset 
2. a) Anatomical distribution of language-responsive electrodes in Dataset 2 
across all subjects in MNI space, colored by cluster. Only Clusters 1 and 3 (those 
from Dataset 1 that replicate to Dataset 2) are shown. b) Anatomical distribution 
of language-responsive electrodes in subject-specific space for eight sample 
participants. c-h) Violin plots of MNI coordinate values for Clusters 1 and 3 in the 
left and right hemisphere (c-e and f-h, respectively), where plotted points (n = 16 

participants) represent the mean of all coordinate values for a given participant 
and cluster. The mean across participants is plotted with a black horizontal line, 
and the median is shown with a white circle. Vertical thin black boxes within 
violins plots represent the upper and lower quartiles. Significance is evaluated 
with a LME model (Methods, Supplementary Tables 3 and 4). The Cluster 3 
posterior bias from Dataset 1 was weakly present but not statistically reliable.
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Extended Data Fig. 10 | Estimation of temporal receptive window (TRW) 
sizes for electrodes in Dataset 2. As in Fig. 4 but for electrodes in Dataset 2. 
a) Best TRW fit (using the toy model from Fig. 4) for all electrodes, colored by 
cluster (when k-medoids clustering with k = 3 was applied, Fig. 6) and sized by the 
reliability of the neural signal as estimated by correlating responses to odd and 
even trials (Fig. 6c). The ‘goodness of fit’, or correlation between the simulated 
and observed neural signal (Sentence condition only), is shown on the y-axis. b) 
Estimated TRW sizes across all electrodes (grey) and per cluster (red, green, and 
blue). Black vertical lines correspond to the mean window size and the white dots 

correspond to the median. ‘x’ marks indicate outliers (more than 1.5 interquartile 
ranges above the upper quartile or less than 1.5 interquartile ranges below the 
lower quartile). Significance values were calculated using a linear mixed-effects 
model (comparing estimate values, two-sided ANOVA for LME, Methods, see 
Supplementary Table 8 for exact p-values). c-d) Same as A and B, respectively, 
except that clusters were assigned by highest correlation with Dataset 1 clusters 
(Extended Data Fig. 8). Under this procedure, Cluster 2 reliably separated from 
Cluster 3 in terms of its TRW (all ps<0.001, evaluated with a LME model, Methods, 
see Supplementary Table 9 for exact p-values).
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